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INTRODUCTION

To ensure solvency for their clients and 
counterparties, financial institutions are required 
to allocate “economic capital”. While value-at-risk 
(VaR) was traditionally used as the industry standard 
for capital in risk allocation, The Basel IV Capital 

Accord recommends transitioning from VaR to the 
expected shortfall (ES) as a more appropriate risk 
measure during stress situations. Both academics and 
practitioners support this shift, since the expected 
shortfall has been identified as the minimally coherent 
and law-invariant risk measure that supersedes VaR. 
It is worth noting that the implementation of the 
expected shortfall (ES) under Basel IV represents a 
significant evolution in the regulatory framework for 
market risk management. Basel IV builds upon the 
enhancements introduced in Basel III, specifically 

MEAN-EXPECTED SHORTFALL PORTFOLIO 
OPTIMIZATION USING A GENETIC ALGORITHM

Vladislav Radak1, Aleksandar Damjanović1, Vladimir Rankovic2 and Mikica Drenovak2* 
1University Union, School of Computing, the Republic of Serbia 

2University of Kragujevac, Faculty of Economics, the Republic of Serbia

Capital requirements for the market risk exposure of banks is a nonlinear function of the expected shortfall 
(ES), which is calculated based on a bank’s actual portfolio, i.e. the portfolio represented by the bank’s 
current holdings. To tackle portfolio optimization with respect to the ES, a genetic algorithm (GA) is used 
in this paper. The paper examines the effectiveness of a specific GA technique, namely the Strength Pareto 
Evolutionary Algorithm 2 (SPEA2) for portfolio optimization when the expected return (the mean) and 
percentage ES are set as the optimization goals. In addition, the differences between the mean-ES optimal 
portfolios and the mean-VaR optimal portfolios obtained by using the same optimization algorithm is 
analyzed in the study. The results document that the SPEA2 method provides well-distributed portfolios 
along the efficient frontier covering different risk levels. Compared to the mean-VaR optimal portfolios, 
the mean-ES optimal portfolios document superiority over the entire efficient frontier in the mean-ES 
plane. Concurrently, the converted mean-ES portfolios seem to converge towards the mean-VaR portfolios 
in the mean-VaR plane and nearly coincide for the high levels of the expected return.
Keywords: portfolio optimization, expected shortfall, VaR, SPEA2

JEL Classification: C61, C63, G11, G17, G21

Original scientific paper
UDC:330.322.5:336.76

doi:10.5937/ekonhor2402149R

* Correspondence to: M. Drenovak, University of Kragujevac, 
Faculty of Economics, Liceja Kneževine Srbije 3, 34000 
Kragujevac, the Republic of Serbia;  
e-mail: mikicadrenovak@uni.kg.ac.rs



Economic Horizons  (2024) 26(2), 143 - 156144

through the Fundamental Review of the Trading Book 
(FRTB), which initially integrated the ES to address 
the limitations of value-at-risk (VaR) in capturing 
tail risk (BCBS, 2019). The ES is an informative risk 
measure reflecting potential losses beyond the VaR 
threshold, thus offering a better understanding of 
tail risk (Acerbi & Tasche, 2002a). However, the use 
of the ES under Basel IV is primarily confined to the 
applications involving internal models for market 
risk assessment, as standardized approaches still rely 
on alternative metrics (BCBS, 2016). This constraint 
ensures that the implementation of the ES is aligned 
with the sophisticated risk modeling capabilities of 
financial institutions while addressing the regulatory 
need for robust risk quantification and capital 
adequacy. 

Rationales for the supremacy of the expected shortfall 
are numerous. Value-at-risk represents the maximum 
potential loss that may happen for a specified threshold 
probability denoted as p. Losses beyond VaR appear 
in extreme situations. That having been said, it is clear 
that VaR denotes the minimum loss in the case of 
extreme situations that can be anticipated logically. In 
stress analysis, however, more pertinent information 
would be the expected loss in extreme situations 
(which is quantified by the expected shortfall). In 
addition, the literature acknowledges that VaR lacks 
coherence because it has no essential attributes of 
subadditivity and convexity. Consequently, the sum 
of VaRs from individual portfolios is not necessarily 
an upper bound of combined portfolios’ VaR. Such 
behavior contradicts the fundamental financial 
principle of diversification (Artzner, Delbaen, Eber & 
Heath, 1999; Acerbi & Tasche, 2002a). 

In their paper, C. Acerbi and D. Tasche (2002b) 
introduce a coherent substitute for value-at-risk. 
The metrics that they proposed are the expected 
shortfall (ES), simultaneously also referring to it as 
conditional value-at-risk in the financial literature. 
Since it deals with certain drawbacks of VaR, the ES 
is a more comprehensive risk measure. To be more 
precise, the financial literature recognizes that the 
ES offers a more accurate assessment of tail risk, 
whereas switching from VaR to the ES enhances 
risk management capabilities. Nevertheless, both 

of these two tail risk metrics are closely related to 
one another. The ES is defined as the conditional 
expected loss given the fact that it surpasses VaR (the 
case of continuous distributions). More generally, 
the ES can be delineated as the weighted mean of 
VaR and the losses beyond VaR (which is suitable for 
discrete distributions). Empirical studies indicate that 
minimizing the ES also yields nearly optimal solutions 
in VaR (as value-atrisk, by definition, never surpasses 
the expected shortfall). Therefore, portfolios with the 
low ES have to exhibit low VaR as well. Furthermore, 
VaR and the ES will be the equivalent metrics in 
the scenarios where the return–loss distribution is 
normal (which is rarely the case in real life). In such 
a case, the portfolio optimizations based on VaR and 
the ES will both result in the same optimal portfolio. 
Conversely, the ES and VaR may lead to disparate 
optimal portfolios for highly skewed distributions. 
This paper is an attempt to shed more light on the 
differences between VaR optimal and ES optimal 
portfolios. In general, VaR cannot be optimized using 
standard analytical methods. Some research studies 
show that VaR can be successfully optimized using 
GA techniques (e.g. Ranković, Drenovak, Stojanović, 
Kalinić & Arsovski, 2014). 

In empirical research studies, genetic algorithms 
(GAs) have emerged as the preferred method for 
solving the financial optimization problems that are 
too intricate for deterministic techniques. The names 
of these algorithms originate from their execution, 
which is inspired by the biological (i.e. genetic) 
processes in the evolution of organisms. Namely, 
through the evolutionary crossover, mutation and 
best-fitted individual selection processes, species 
in nature evolve and become more and more 
accommodated to the environment. In the same 
manner, in genetic algorithms, the solutions with 
the better values of the given objective functions 
are selected for the recombination (crossover) and 
mutation, which would more likely result in better 
offspring solutions in terms of the objective functions. 
The multi-objective variants of genetic algorithms 
(MOGAs) are very suitable for solving multi-objective 
problems since their ability to find a set of optimal 
solutions (the Pareto front) in a single run, providing 
a possibility of applying arbitrary constraints on the 
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values of decision variables and/or objective functions 
(Metaxiotis & Liagkouras, 2012).

In this research study, the multi-objective Strength 
Pareto Evolutionary Algorithm 2 (SPEA2) algorithm is 
utilized so as to generate the expected (mean) return–
ES and the expected (mean) return–VaR efficient 
frontiers. To the best of the authors’ knowledge, this 
study explores a relatively under-researched area 
by investigating the differences in the mean–ES and 
mean–VaR optimal portfolios obtained by using 
multi-objective evolutionary algorithms.

LITERATURE REVIEW

The optimization methods based on the processes 
which mimic natural selection have their roots 
back in the 1930s. Concurrently, the inclusion of 
numerous practical constraints in the financial 
portfolio optimization models have increased their 
complexity and made them difficult to solve by means 
of conventional optimization techniques. Those 
pioneering academic research studies gave rise to the 
three distinct streams. The insights into each of them 
will be synthetized in this paper. 

The first of three streams includes the studies 
exploring the utilization of GAs in the realm of 
portfolio optimization. The research study conducted 
by S. Arnone, A. Loraschi and A. Tettamanzi (1993) 
investigated the bi-objective optimization problem 
in the context of the mean return-variance-based risk 
measures for unconstrained optimization. Having 
introduced the trade-off coefficient, the authors 
converted the initial bi-objective problem into a 
single-objective one. Similar research was carried out 
by T.-J. Chang, S.-C. Yang and K.-J. Chang (2009) and 
E. P. Setiawan and D. Rosadi (2020), who proposed 
the GA-based mean return-risk optimization under 
the cardinality constraint. The authors considered 
risk measures such as semi-variance, the mean 
absolute deviation and variance with skewness. 
When optimization itself is concerned, the authors 
followed the procedure for the transformation of the 
bi-objective problem to the single-objective problem 

via the trade-off coefficient having been proposed 
by S. Arnone et al (1993). In contrast, V. Ranković et al 
(2014) explored the GA-based portfolio optimization 
with historical VaR as a risk metric. In their paper, 
the authors introduced two distinct optimization 
approaches, namely the single-objective approach, by 
employing the single-objective GA (SOGA), and the 
multi-objective approach, by employing the multi-
objective GA (MOGA). Both methods provide the 
mean-VaR efficient frontiers that exhibit favorable risk/
reward trade-offs for solution portfolios. However, the 
authors stress that the MOGA approach outperforms 
the SOGA counterpart in terms of computational 
efficiency.

The second stream found in the literature addresses 
the challenge of portfolio optimization that utilizes the 
ES as the measure of portfolio risk. The relevance of 
the ES as a risk measure can be best illustrated by the 
fact that it transcended traditional financial analysis 
which it originates from. It has gained traction in 
diverse fields of science and the academic literature, 
such as breast cancer therapy (Chan, Mahmoudzadeh 
& Purdie, 2014), scheduling (Sarin, Sherali & Liao, 
2014), and machine learning (Takeda, 2009; Takeda 
& Kanamori, 2009; Takeda, Fujiwara & Kanamori, 
2014; Wang, Dang & Wang, 2015). There are attempts 
to tackle the problem using the GA to optimize the 
portfolio regarding the different versions of the ES 
(Wang et al, 2015; Jadhav & Ramanathan, 2019). 

C. Acerbi and D. Tasche (2002a) outlined a 
methodology for the assessment of the ES risk 
contribution of individual portfolio constituents. S. 
Ciliberti, I. Kondor and M. Mézard (2007) explored 
the feasibility of portfolio optimization under the ES 
as a risk measure. Their paper demonstrates the fact 
that, if the asset-to-data point ratio (i.e. N/T) exceeds 
the critical value, empirical return distributions are 
not defined well. Since the critical value is contingent 
upon the ES probability threshold, the lower it is, the 
longer time series is required for effective portfolio 
optimization. F. Caccioli, J. D. Farmer, N. Foti & 
D. Rockmore (2015) proposed a novel approach to 
determining the requisite length of time series for the 
effective portfolio optimization based on the ES as a 
risk metric, their approach relying on the construction 
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of contour maps. The maps are constructed based 
on the confidence level, the relative estimation error 
and the number of portfolio constituents. Their 
findings suggest that the requisite sample size is often 
unfeasibly large for rational portfolio optimization 
scenarios. In other words, effective portfolio 
optimization would require unreasonably long time 
series of returns, regardless of the chosen confidence 
level and the number of constituents in the portfolio.

The third and the last stream in the literature 
delves into the diverse methodologies employed by 
researchers when utilizing GAs in solving complex 
portfolio optimizations. One such paper is that by C.-
C. Lin and Y.-T. Liu (2008), who conducted a research 
study focusing on the seminal H. Markowitz (1952) 
portfolio optimization model that incorporates a 
constraint on minimum transaction lots. Using 
SOGA, researchers derived the mean return-variance 
efficient frontiers. D. W. Corne, J. D. Knowles and 
M. J. Oates (2000) carried out another important 
research study and demonstrated the exceptional 
performance of SPEA in comparison to the other 
MOGAs. Therefore, SPEA has been established as 
the generally accepted benchmark in many recent 
academic research studies on this topic. Building 
upon this foundation, E. Zitzler, M. Laumanns and 
L. Thiele (2002) introduced the enhanced version of 
SPEA known as SPEA2. The improvements include 
the refined archive truncation method, the addition 
of the density-estimation technique, and the new fine-
grained refined fitness assignment strategy. Thanks 
to them, SPEA2 dominates its predecessor. The papers 
by K. P. Anagnostopoulos and G. Mamanis (2011) and 
V. Radak (2020) will also be addressed. The authors 
further explored and compared the GA portfolio 
optimizations based on the mean-variance, mean-
ES, and mean-VaR methodologies, which include 
quantity, cardinality, and class constraints. Their 
research revealed that the Non-dominated Sorting 
Genetic Algorithm II (NSGA-II), the Pareto Envelope-
based Selection Algorithm (PESA), and SPEA2 
exhibited efficient performance regardless of the used 
risk metric. 

MORE ON THE EXPECTED SHORTFALL

Here, A. J. McNeil, R. Frey and P. Embrechts (2015) 
definition of the ES is presented. For the loss L whose 
distribution function is FL and which has its finite 
expected value E(|L|)<∞, the ES at the confidence level    
α∈(0,1) is defined as follows:

                 (1)
where qu(FL)=Fτ(u) is the quantile function which 
depends on the distribution function of the loss L, i.e. 
FL. For the given value of VaRα, ESα, can be obtained as 
follows: 

                 (2)

The equation (2) makes it clear that the ES essentially 
represents the expected loss which surpasses VaR, 
i.e. the anticipated loss in extreme scenarios. As was 
pointed out by C. Acerbi, C. Nordio and C. Sirtori 
(2001), the ES can easily substitute VaR as the downside 
measure, given the fundamental similarities between 
the two approaches, which is also true for any other 
left-tail statistics. Nevertheless, the ES still has some 
drawbacks. One notable limitation pointed out by Y. 
Yamai and T. Yoshiba (2005) implies its substantial 
susceptibility to estimation errors. Consequently, it 
requires very long time series of returns for robust 
estimation.

To define the ES within the scope of portfolio 
optimization, the portfolio loss needs to be defined. 
that the portfolio loss is assumed to be the function 
L(x,y). It depends on the two vectors: x and y. Vector  
x denotes the vector of unknown portfolio weights. 
Vector y is the random vector characterized by the 
probability density function p(y) which represents 
uncertainties in the market parameters influencing 
the loss. Consequently, the probability that L(x,y) falls 
below a threshold value β is going to be a function 
ψ(x,β). Under this setup, the portfolio’s ES for the loss 
function corresponding to the vector of weights x at 
the given confidence level α∈(0,1) can be expressed as 
follows:
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              (3)

The previous notation is inadequate for practical 
implementation. Therefore, the following 
reconstruction is recommended, namely:

                  (4)

where

 (5) 

and t+=max{t,0}.

The utilized portfolio optimization models

The variation of H. Markowitz’s (1952) multi-objective 
ES-based optimization model is introduced at this 
point. The presented model aims to simultaneously 
maximize the portfolio’s expected return (denoted 
as μp(x) in (Eq. 6.2)) and minimize the portfolio’s risk 
estimated via the expected shortfall (denoted as ES in 
(Eq. 6.1)).

(6.1)

(6.2)

(6.3)

(6.4)

The equation 6.3 is a budget constraint. It ensures that 
the sum of weights must be equal to 1, i.e. that the 
entire investment budget must be invested, nothing 
more and nothing less. The equation 6.4 represents the 
short-selling prohibition and the holding constraint 
(i.e. it puts a limit on the weight of the budget that 
can be invested in a single asset). Mathematically, it 
prohibits negative weights and limits the maximum 
size of each weight. Unless otherwise stated, uj is 
equal to 1. 

THE STRENGTH PARETO EVOLUTIONARY 
ALGORITHM 2 (SPEA2)

The Strength Pareto Evolutionary Algorithm 2 
(i.e. SPEA2) introduced in the paper by E. Zitzler, 
M. Laumanns and L. Thiele (2002) is the multi-
objective evolutionary algorithm that seeks the exact 
or approximate Pareto-optimal set of solutions. It 
is the improved version of the original version of 
SPEA developed by E. Zitzler and L. Thiele (1999). In 
contrast to the single-objective counterpart, the multi-
objective algorithms such as SPEA2 create the Pareto-
optimal solution set in a single run. 

The main loop is given as follows:

Step 1. The initialization: Generate the initial 
population P0 and create the empty archive . 
The set t=0.

Step 2. Fitness assignment: Calculate the fitness 
values of the individuals  and . The fitness value 
F(i) of the individual i is defined as follows:

(7)

where R(i) denotes raw fitness and D(i) denotes 
density. Raw fitness is calculated as follows:

(8)

where S(j) denotes the strength value of the individual 
j, and represents the number of solutions in the actual 
population and the archive that are dominated by the 
solution j:

(9)

|∙| describes the cardinality of the set, + means 
the multi-set union and ≻ resembles the Pareto-
dominance.

The density value D(i) is defined as the function of the 
distance to the k-th nearest solution (σi

k):

(10)
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where , N is the population size and    

 is the archive size.

It is important to note that the fitness value is to be 
minimized.

Step 3. Environmental selection: Copy all the non-
dominated individuals in  and  to . If the 
size of  exceeds , reduce  by means of the 
truncation operator; otherwise, if the size of  is 
less than , fill  with the dominated individuals 
in  and  .

Step 4. Termination: If t > T or if another stopping 
criterion is met, set A to the set of the decision vectors 
represented by the non-dominated individuals in 

. Stop.

Step 5. Mating selection: Perform binary tournament 
selection with replacement on  in order to select 
the parents. Binary tournament selection implies a 
random selection of two solutions from a given set, 
and the solution with a better fitness value is selected 
for mating. The process is repeated until the mating 
pool is completed.

Step 6. Variation: Apply the recombination and 
mutation operators to the mating pool and set  
to the resulting population. Increment generation 
counter (t->t+1) and move on to Step 2.

In the case of the SPEA2 algorithm, the fitness value is 
complex and combines the three values: the number 
of the solutions dominated by the given solution, 
the number of the solutions dominating the given 
solution, and the density value that measures the 
distance from the other solutions in the solution set. 
Lower density values are preferred.

DATA SOURCES AND THE MAIN 
COMPUTATIONAL RESULTS

In this section, the empirical results obtained by 
conducting optimization experiments on the daily 

historical returns of the DAX constituents were 
subjected to analysis. The sample spans from 5th 
January 2015 to 28th April 2017. A total of seven distinct 
assets were selected for further investigation due 
to their favorable distribution in terms of both risk 
and return (see Figure 1). The reason for a relatively 
small number of assets lies in the computational 
times. The selection of the seven German stocks over 
a two-year period appears to be unconventional to 
demonstrate the method. This sample size is limited 
both temporally and cross-sectionally. The reason 
for that lies in the computational times: the latest run 
for the tests that include the SPEA2 algorithm took 
more than four days. An extended set of stocks would 
exponentially have extended the computational times 
and would have presented a significant challenge 
in making investment decisions in the long run. A 
broader dataset, encompassing a more extensive 
range of stocks over the entire available historical 
period or including various asset classes and markets, 
would have provided a more robust illustration. The 
selection of the data used for this illustration should 
be justified and whether their methodology has 
the computational constraints necessitating such a 
restricted sample size should be clarified.

Based on the previous results, as many as seven assets 
were selected for portfolio optimization, namely 
Münchner Rückversicherungs-Gesellschaft AG, Beiersdorf 
AG, Henkel AG & Co. KGaA, Siemens AG, Deutsche Börse 
AG, Fresenius SE & Co. KGsA, and Infineon Technologies 
AG, the review of whose expected returns and risks 
are accounted for in Table 1. Risk is measured as a 5% 
1-day historical ES. When the expected returns are 
concerned, they were computed as the mean of the 
daily asset log returns. However, the expected returns 
are not annualization. Their annualization would 
create a significant difference in the level between the 
risk and expected return for the selected asset, which 
would make optimization more computationally 
difficult. Instead of that, the daily log returns were 
scaled to a monthly basis, so that the levels of the 
expected returns and risks were nearly in the same 
range. 
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Table 1  The review of the risk (ES) and expected log 
return for the selected assets

Number Asset ES Mean log 
returns

1 Münchener Rück. 2.71% 0.98%

2 Beiersdorf AG 2.87% 1.50%

3 Henkel AG 2.98% 1.73%

4 Siemens AG & Co. KGaA 3.31% 2.16%

5 Deutsche Boerse AG 3.46% 2.24%

6 Fresenius SE 3.55% 2.97%

7 Infineon Technologies 
AG 4.22% 4.28%

Source: Authors

Multi-objective optimization with SPEA2

The results obtained using the SPEA2 genetic 
algorithm described in Section 4 of the paper are 
presented here. The algorithm was executed twice 
with different settings. In both trials, the population 
size was set to 500 individuals, while the number of 
iterations was set to 200. As is illustrated in Figures 
2 and 3 (which depict the optimization results), the 
archive size was designated to 21 in the first trial, 
whereas in the second, it was adjusted to 250.

As is shown in Figure 2, SPEA2 produces optimal 
portfolios with a superior return-to-risk ratio 
compared to the individually analyzed assets. To 
ensure the presence of the maximum return solution, 
which is always a single-asset solution, this single-
asset solution was added in the initial population. 
The exact results obtained via the first optimization 
trial are given in Table 2.

Figure 1  The summary account of risk/return for all the DAX constituents, plotted as the mean daily log return – 
the ES efficient frontier

Note: The white dots represent the constituents that were discarded due to the relatively low returns compared to the ES, 
whereas the black dots represent the constituents that were discarded due to the incompleteness of the data.

Source: Authors
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The results obtained from the second optimization 
trial are plotted in Figure 3, which clearly shows 
that the largest number of the optimal portfolios 
obtained in the second trial are concentrated around 
the middle and the maximum expected returns. It 
should be noted that, in the second optimization trial, 
optimal portfolios with a lower risk level compared 
to those obtained in the first optimization trial can be 
seen. As before, however, it seems that there is a lack 
of optimal portfolios around the minimum risk (see 
Figure 3).

Comparison with the mean-VaR optimal 
portfolios

To analyze the differences between the results 
obtained in the case when VaR is set as the 
optimization objective instead of the ES, the 
experiment was repeated once more, but now with 
VaR as a risk metric. The results obtained with SPEA2 
are depicted in Figure 4.

Figure 4 illustrates the distribution of the optimal 
portfolios obtained by SPEA2 with the VaR 
minimizing objective across the efficient frontier, 
showing simultaneously a superior return-to-risk 
ratio compared to the seven selected individual assets. 
If Figure 3 is contrasted with Figure 4, however, it can 
be seen that there is one notable difference between 
the optimal portfolios (i.e. the efficient frontier) 
produced by SPEA2 which minimizes the ES (as is 
depicted in Figure 3) and those obtained when the 
same algorithm minimizes VaR (as is depicted in 
Figure 4). The resultant “efficient” frontier in the case 
of VaR minimization appears to be flatter and, even 
after the optimization iterations had doubled, it was 
still impossible to make any significant improvement. 
Furthermore, the research results suggest that the 
optimal portfolios for the lower levels of the targeted 
expected returns were not distributed well and 
seemed to be limited by a barrier. These disparities 
were best seen when the optimal portfolios obtained 

Table 2  The optimization results obtained by using 
SPEA2 with the archive size 21 in the first trial

Number Mean ES Number Mean ES
1 2.21% -2.63% 12 3.31% -3.14%
2 2.25% -2.64% 13 3.34% -3.16%
3 2.40% -2.70% 14 3.45% -3.25%
4 2.55% -2.76% 15 3.56% -3.32%
5 2.61% -2.77% 16 3.65% -3.41%
6 2.78% -2.84% 17 3.73% -3.45%
7 2.97% -2.94% 18 3.82% -3.53%
8 3.02% -2.97% 19 3.93% -3.65%
9 3.07% -2.99% 20 4.03% -3.83%
10 3.13% -3.04% 21 4.26% -4.20%
11 3.19% -3.06%

Source: Authors

Figure 2  The results of SPEA2 for the archive size 21

Source: Authors
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Figure 3  The optimization results obtained using SPEA2 with the archive size 250 in the second trial

Source: Authors

Figure 4  The SPEA2 optimal portfolios based on VaR as a risk objective vs the individual assets

Source: Authors
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by mean-VaR optimization were plotted against those 
obtained by mean-ES optimization in the mean–ES 
plain. To do so, the ES was computed for the mean-
VaR optimal portfolios, and the plotted result is 
displayed in Figure 5.

According to Figure 5, the mean-VaR optimal 
portfolios are evidently not distributed well when 
transformed in the mean-ES plain. The absence of 
solutions in the ES range of approximately 3.5% to 
3.7% is apparent, with the more pronounced clustering 
of the optimal portfolios with the low expected return 
(considering the left-hand side of the graph depicted 
in Figure 5). In addition, the numerous portfolios 
exhibit nearly identical expected returns, yet display 
notable discrepancies in the ES values. These results 
were the motivation to compare the previous two 
sets of the optimal solutions in the mean-VaR plain 
as well. To do so, the VaR of the mean-ES optimal 
portfolios were computed and then those portfolios 

were plotted against the mean-VaR optimal portfolios 
in the mean-VaR plain (Figure 6).

As can be seen in Figure 6, the mean-ES optimal 
portfolios are distributed significantly better along 
the resulting efficient frontier. In addition, it can 
be noted that both efficient frontiers now look very 
similar to each other. The optimal portfolios obtained 
via ES minimization seem to converge towards the 
VaR optimal portfolios and nearly coincide for the 
high levels of the expected return.

In the end, a conclusion can be drawn that, generally 
speaking, VaR optimization does not provide ES 
optimal, or near-optimal, solutions. ES optimal 
solutions may simultaneously generate near-optimal 
VaR solutions. Consequently, in the case when both 
the low ES and low VaR are the desirable properties 
of the managed portfolio, it may be worthwhile to 
optimize it with respect to the ES. 

Figure 5  The transformed VaR optimal portfolios vs the ES optimal portfolios

Source: Authors
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CONCLUSION

This research study explores the applicability of 
the expected shortfall as a risk measure in the 
optimal portfolio selection problem. To generate 
optimal mean-ES portfolios, SPEA2 introduced by E. 
Zitzler et al (2002) was employed. Aiming to obtain 
computational efficiency, as many as seven most 
efficient assets from the DAX index were opted for. 

In order to establish a benchmark for the results of 
the research study, SPEA2 was also used to generate 
the mean-VaR optimal portfolios. The efficient 
frontier obtained by mean-VaR optimization showed 
a flatter profile compared to that generated by the ES 
and produced the well-dispersed optimal solution. 
Subsequently, the ES for the mean-VaR optimal 
portfolios was computed and those portfolios were 
plotted with the mean-ES optimal portfolios. Notable 
disparities were observed between the two frontiers, 

particularly at the lower expected return levels. The 
transformation of the mean-VaR solutions to the 
mean-ES plain revealed the uneven distribution and 
absence of certain ES values. Conversely, VaR for the 
mean-ES optimal portfolios was also estimated and 
those portfolios were plotted against the mean-VaR 
optimal portfolios. The resulting efficient frontiers 
closely resembled each other, with the mean-ES 
solutions aligning well with the mean-VaR optimal 
solutions. As a matter of fact, it seems that the mean-
ES optimal portfolios converge to the mean-VaR 
optimal solutions. The findings of this research study 
demonstrate that the portfolio optimization based 
on the minimization of VaR and the ES can produce 
significantly different optimal portfolios for the same 
opportunity set of assets.

The shortcomings of the no-short-selling constraint 
are nevertheless acknowledged. Short positions can 
be strategically employed through direct hedges 

Figure 6  The transformed ES optimal portfolios vs the VaR optimal solutions

Source: Authors
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in asset-liability management in order to manage 
various exposure types. Therefore, omitting this 
constraint limits the applicability of this study and 
limits its ability to capture the full spectrum of real-
world portfolio management practices, potentially 
reducing the relevance and robustness of the findings.

The limitations of this study are also recognized 
and avenues for future research in this domain are 
identified. Firstly, the number of the assets chosen 
for the optimization algorithms is very small and 
random. Due to the simple structure of SPEA2, it 
would be easy to add certain real-world constraints, 
such as cardinality constraints or short selling. 
Furthermore, a more in-depth comparison with 
different multi-objective evolutionary algorithms 
would be of interest as well.
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