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The models represent the key methodological tool for management problems solving in System Dynamics (SD) as 
a functionalist systems methodology. Above all, it is about mathematical models, built according to appropriate 
feedback structures, i.e. specifi c elements and fl ows that form feedback loops. Since SD is based on the assumption 
that a system structure represents the behavioral key determinant, SD models provide an eff ective prediction of 
the future system behavior. The paper focuses on the modeling process in SD, as a complex, iterative process, 
consisting of the following phases: model conceptualization, formulation, testing and implementation. Although 
being extremely useful in solving numerous organizational managing problems, SD models have certain 
disadvantages as a consequence of their quantitative nature. Qualitative modeling and group model-building, 
as possible directions for further SD development, are appropriately important in SD models̀  defi ciencies 
elimination.
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INTRODUCTION

Diff erent systems approaches and methodologies can 
be applied in researching and solving contemporary 
management problems. System Dynamics (SD), as 
a relevant systems methodology, is appropriate for 
management problem situations characterized as 
complex and unitary. According to this, and bearing 
in mind the SD key determination – focused on 
researching the feedback structure generating a certain 
system behavior – SD represents relevant structuralist-

functionalist systems approach to management. 
The basic allegations of the management problem 
situations in SD are the structure and processes within 
SD, and the key tools in management problems solving 
are appropriately developed models. In that sense, the 
research will be focused on the SD modeling process, 
i.e. SD models as relevant tools for management 
problems solving within contemporary organizations.

The aim of the paper is to demonstrate SD possibilities, 
i.e. its models, in dealing and solving contemporary 
management problems. In fact, the aim is to 
demonstrate the ways in which SD can help managers 
move through adequate problem areas in predicting a 
future behavior and designing certain policies for an 
improvement in organizational functioning. 
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This paper is based on the following key hypothesis: 
If the structure represents the key determinant of a 
system behavior, then SD models – through appropriate 
computer stimulations – provide a prediction of a 
future behavior for the researched system. 

First of all, the paper introduces the key SD features 
as a functionalist systems approach to management. 
Then, the process of SD modeling is researched, i.e. 
certain characteristics and modeling process phases 
are specifi ed. Since the focus is on the modeling 
process itself, each phase is considered separately 
– conceptualization, formulation, testing and 
implementation. The SD model is briefl y illustrated in 
the paper on an example of a new product adoption 
on the market, because this is about tools with an 
exceptional applicative potential. Finally, some 
defi ciencies of SD models are identifi ed, as well as 
possible directions for further SD development through 
qualitative modeling and group model-building.

SYSTEM DYNAMICS – A FUNCTIONALIST 
SYSTEMS APPROACH TO MANAGEMENT

System Dynamics, as a systems approach to 
management problems solving, is based on the theory 
of information feedback and control. SD focus is on the 
problems that can be modeled as systems, essentially 
made of diff erent elements and fl ows, i.e. inter-
elementary relations that create a feedback loop and 
are represented as continual processes. Appropriate 
deterministic model structures not evolving over time 
are developed for those systems. SD modeling and 
simulation are widely used in the fi eld of social, and 
especially economic, systems and diff erent types of 
organizations, with a signifi cant stress on the policy 
and design analysis.

J. W. Forrester (1972) made foundations of SD, originally 
entitled as Industrial Dynamics. SD deals with time 
changeable interactions of diff erent parts of the 
management system in order to determine in which 
way the organizational structure, policy, time delay 
in making decisions and actions interact aff ecting the 
system`s success. 

Since management problem situations are represented 
by a appropriate structures and processes within, the 

theoretical base of SD is as follows (Petrović, 2010, 369): 
A system`s behavior is primarily conditioned by its 
structure. It is supposed that the considered structure 
and processes can be represented by adequate diagrams 
and mathematical models of system. According to the 
SD theory, a lot of variables of the existing complex 
systems become casually connected in corresponding 
feedback loops. System connections between feedback 
loops constitute the system’s structure, and that 
structure is the key determinant of the system`s 
behavior. (Jackson, 2003, 67). 

As an essential SD aggregate, a structure is determined 
by (Petrović, 2010, 370-371): line, feedback direction, 
nonlinearity and loop multiplicity. The number of 
levels, i.e. number of variables used for representing 
the structure of the researched system, determines the 
system line. Feedback can be positive and negative, 
considering the direction. Positive feedback causes an 
increase, i.e. creates a rise or a fall, and the negative one 
means a specifi c preventing or controlling infl uence. 
The nonlinear connecting of positive and negative 
loops can lead to loop domination, allowing controlled 
growth. Management problem situations are, as a 
rule, represented by structures with multiple positive 
and negative loops. It is assumed that an eff ective 
prediction and control can be made and conducted, 
respectively, by specifi ed structure characteristics. 
Time-based mathematic SD models simulate possible 
scenarios of an organization’s functioning, and, in that 
way, provide relevant trends projections. Starting with 
the fact that a concrete prediction is reliable, the focus 
is accordingly transferred to introducing appropriate 
control policies.

Beside SD prediction and control, the SD model is of 
a great importance, and its basic aggregates are levels 
and rates. The level is considered to be a changeable 
value over time. In other words, levels are the present 
variable values, i.e. values that have resulted from an 
accumulated diff erence between infl ows and outfl ows 
(Forrester, 1972, 68). Apart from levels, rates defi ne the 
present fl ows among a system’s levels. Rates correspond 
to an activity, while levels measure the resulting state 
which the system has been brought to by the activity. 
For example, the number of employees represents the 
level determined by the hire rate and the quit rate; or 
the debt level is determined by the borrowing rate and 
the repayment rate, etc. (Sterman, 2000, 200).
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The mathematical expression of the SD model is 
represented by a system of equations (levels and rates 
equations) controlling variable interactions of the 
considered problem situation that change over time. 
Since the modeled system moves over time, from time 
to time it is necessary that equations be converted. 
Diff erent pieces of so% ware, such as: DYNAMO, 
Powerism, Venism, have been developed to support 
SD modeling and simulation. 

THE MODELING PROCESS 
IN SYSTEM DYNAMICS

Modeling, as an integral part of the learning process 
in organizations, represents an iterative, continual 
process of the formulating, testing and revision of both 
formal and mental models. As an adequate expression 
of management problem situations, the models are a 
powerful tool for identifying and representing their 
key determinations, ways they are manifested and 
their relevant implications. According to that, valid 
models are an extremely useful methodological tool in 
organization management, i.e. in deciding on the way 
a manager should go through management problem 
areas in contemporary organizations (Petrović, 2010, 
572). The aim of the SD model is to identify policies and 
organizational structures that improve functioning 
and provide an organizational success.

The modeling process should be focused on important 
questions, such as essential organizational problems, 
and is part of the organizational and social contexts. 
Before the modeling process starts, the modeler must 
have access to the organization and identify clients. 
That is about individuals and groups whose behavior 
is aff ected by the modeling process, i.e. whose behavior 
has to be changed in order to solve the problem. The 
modeling process should be consistent with clients’ 
skills, abilities and aims. Most clients are interested 
in the fact that models should support conclusions 
already made, or use them as power tools inside the 
organization. However, the modeler must be prepared 
to inform clients about their wrong assumptions, if the 
modeling process says so (Sterman, 2000, 84-85). 

The SD model should have the following characteristics, 
namely, it should be (Forrester, 1972, 67):

able to describe any problem in cause-eff ect • 
relations;

mathematically expressed in a relatively simple • 
way;

able to include numerous variables, within • 
practical computer ability limits;

able to manage diff erent discontinuities, not • 
aff ecting the results, but generate discontinued 
changes in decisions when necessary.

SD modeling is a process carried out through several 
phases, and authors classify it in diff erent ways. 

Luna-Reyes & Andersen (2003, 275) specify the 
modeling process phases according to various authors. 
In that sense, there are following classifi cations: 
conceptualization, formulation, testing and 
implementation; then: problem defi nition, system 
conceptualization, model formulation, analysis of 
model behavior, policy analysis and model use; or: 
diagram constructing and analysis, simulation phase 
(stage 1) and simulation phase (stage 2).

Also, Sterman (2000, 86) classifi es the modeling process 
phases into: problem articulation, dynamic hypothesis 
formulation, simulating model formulation, model 
testing and policy formulation and implementation. 

In spite of diff erent classifi cations of certain phases, 
generally, the modeling process includes the following 
activities (Jackson, 2003, 68-69): Above all, the 
conceptualization phase, clarifying the problem and 
identifying variables having an infl uence on it. Then, 
the feedback loop model revealing relations among 
variables is built. That model, in the formulating phase, 
further develops into an appropriate mathematical 
model, i.e. level and rate equations. Those equations, 
helped by a certain piece of so% ware, provide a 
relevant computer simulation of a system behavior. 
The model validity is estimated in the testing phase, 
and possible ways for improving the results for the 
system functioning, i.e. certain policy designing, are 
identifi ed in the implementation phase. 

The aim of the conceptualization phase is to build a 
conceptual model representing a relevant problem 
within the system. It is necessary that the following 
activities be conducted in this phase (Albin, 1997, 6): 
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the defi nition of the model purpose; • 

the determination of the model boundaries and • 
identifi cation of its key variables;

the description of the model behavior, i.e. building • 
the reference mode of the key variables;

the presentation of the system feedback loops by • 
diagrams.

The most important step in the modeling process is 
problem defi ning, i.e. se' ing the model purpose. Each 
model is the representation of a certain system. In 
order to be useful, a model should deal with a specifi c 
problem and simplify rather than refl ect the system 
in details. The system usefulness lies in the fact that 
they simplify reality by creating a representation of 
something that can be understood (Sterman, 2000, 
89). The modeler should also consider who the model 
is primarily designed for. Reaching agreement on 
the model purpose is of an essential importance. It is 
very diffi  cult to decide which system components are 
important without a clear and strictly defi ned purpose. 
If the purpose is defi ned too widely or too abstractly, 
the model will include too many components and will 
be too complex for any practical analysis. 

The most common mistakes in defi ning the model 
purpose are (Albin, 1997, 9):

the purpose does not enables system • 
understanding;

the purpose does not reveal policies to improve • 
the system behavior;

the purpose does not refl ect mental models and is • 
not used as a communication and unifi cation tool.

A% er having chosen the problematic focus fi eld, the 
modeler must collect relevant data and defi ne the 
model. When talking about the model boundaries, it is 
necessary that the fact that every feedback system has 
closed boundaries which are a frame for generating 
a certain analyzed behavior be stated. Above all, the 
modeler has to explore all components considered 
to be necessary for the system model. It is about the 
initial components list. In order to specify the model 
boundaries furthermore, the modeler must divide 
the initial components list into two important groups 
(Albin, 1997, 10; Sterman, 2000, 97):

endogenous – dynamic variables included in the • 
feedback loops of the system, and

exogenous – components whose values do not • 
directly aff ect the system.

A% er dividing these two groups of components, it 
is necessary that we determine which components 
are stocks and which are fl ows. It should be marked 
that exogenous components can be neither stocks nor 
fl ows, but adequate constants (Albin, 1997, 11).  The 
endogenous phenomenon explanation is something 
that is tended to within the SD, as well as that a 
problem should be described dynamically, i.e. as an 
appropriate kind of behavior, developed over time. The 
time interval should be determined in a way that it can 
include enough information about the past in order to 
show the reasons for the occurrence of the problem and 
describe its symptoms. Also, it should include relevant 
information about the future to include the delayed 
and indirect eff ects of potential policies. The most 
signifi cant diffi  culty in mental models is a tendency 
to think of causes and eff ects as local and current. In 
dynamic, complex systems, the cause and eff ect are 
distant over time and space, which considers feedback 
systems to be the ones with long delays, distant from 
the decision point or the problem symptom (Sterman, 
2000, 91).

The reference mode, i.e. a set of diagrams showing 
the way a problem occurs and how it can evolve 
in the future, is built a% er determining the model 
boundaries and time interval. The reference mode, in 
fact, represents the key variables behavior over time 
and can be useful before and a% er the model building. 
Reference modes can be changed during the modeling 
process, and, according to the initial reference mode, 
the modeler can reassess and redefi ne the model 
purpose. 

The last step in the conceptualization phase represents 
the feedback system structure. SD uses diff erent types 
of diagrams in representing feedback structures. 
Those are causal loop diagrams, stock and fl ow 
diagrams, structure diagrams and policy structure 
diagrams (Lane, 2008, 9). This paper briefl y considers 
causal loop diagrams and stock and fl ow diagrams, as 
the most commonly used tools for the diagram-based 
representation of  a system structure in SD. 
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Causal Loop Diagrams (CLD) show, above all, the 
orientation of feedback, as well as the key elements, i.e. 
variables, and their mutual interaction. Variables are 
connected by causal links, represented by adequate 
arrows. Relations that produce change in the same 
direction (rising or falling) are marked with a positive 
sign in the causal loop diagram. The positive feedback 
link means that if the cause increases, the eff ect also 
increases above what it would otherwise have been. 
Also, if the cause decreases, the eff ect decreases below 
what it would otherwise have been. Opposite to that, 
the negative feedback link means that if the cause 
increases, the eff ect decreases below what it would 
otherwise have been; and if the cause decreases, the 
eff ect increases above what it would otherwise have 
been (Sterman, 2000, 139).

Therefore, each link is characterized by a certain 
polarity, i.e. by the eff ect direction which the infl uencing 
variable has on the infl uenced variable (Lane, 2008, 5). 
This describes the structure of the system, not behavior 
of the variables. Also, this describes something that 
would happen if a change occurred, not something 
that really happens. The previously stated expression 
below or above what it would otherwise have been, 
has an important signifi cance because an increase or 
a decrease in the causal variable does not necessarily 
mean the eff ect will actually increase or decrease. 
Beside determining the link polarity, it is necessary 
that loop polarity be determined. Since there are more 
possible positive and negative links, the loop polarity 
can be determined by multiplying the signs of the link 
polarities in a loop and fi nding the net sign (Lane, 
2008, 10).

CLD have certain defi ciencies, such as:  a lack of 
precision, a lack of distinctions between stocks and 
fl ows, mistakes in determining the loop polarity, etc. 
(Lane, 2008, 12-14).

Stock and fl ow diagrams are more detailed than causal 
loop diagrams. Each causal loop has to contain at least 
one level. If a causal loop does not contain a level, the 
behavior over time that should be examined cannot be 
identifi ed. Each element is represented adequately in 
stock and fl ow diagrams (Sterman, 2000, 192):

stocks are represented by rectangles;• 

infl ows are represented by arrows that fl ow into” • 
the stock;

outfl ows are presented by arrows that “rise” from • 
certain stock;

valves represent fl ows;• 

clouds represent the sources or sinks for the fl ows. • 
The source represents the stock which the fl ow 
arises from, and sinks represent the stocks which 
the fl ows “fl ow into”.

Some mistakes (such as determining the link and loop 
polarity) can be avoided by presenting feedback loops 
in stock and fl ow diagrams; therefore, relations among 
components in stock and fl ow diagrams are strictly 
defi ned, contrary to causal loop diagrams. Being 
generally more complex and more time demanding to 
create, stock and fl ow diagrams provide much more 
information than causal loop diagrams. According to 
that, they are an adequate base for making conclusions 
about the system behavior (Lane, 2000, 244). However, 
there are certain limits for their use: they can encourage 
excessive detailing; be too complex and technically 
oriented; cannot enable a diagram explanation for all 
types of phenomena, etc. (Lane, 2000, 244; Lane, 2008, 
15).

According to causal loop diagrams and stock and fl ow 
diagrams, it is possible to determine a set of equations 
in the model formulation phase, i.e. develop an 
adequate mathematical model of the situation which is 
being researched. Due to the fact that time is one of the 
key factors, it is necessary to determine the successive 
series of the system’s state over time, and consequently 
a periodically converted equation. According to 
Forrester (1972, 74), a series of calculations that should 
be done is presented in the Figure 1.

The basic equations of the SD model are divided 
into two groups: level equations and rate equations; 
however, level equations are calculated fi rst (Petrović, 
2010, 377-379): Level equations show the ways for 
determining levels in time K, based on the levels in 
time J and on rates over the interval JK. Level equations 
are independent of each other, and only depend on 
information before time K. That is why the level in 
time K depends on: the previous level value in time J 
and the rate in the time JK.
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time. Generally, a level, i. e. stock, can be presented by 
the following equation (Sterman, 2000, 194):

[ ] )
0

t

0
t

Stock(t)= Inflows -Outflows ds+Stock(t∫  (1)

where stock is determined in time t (time K in Figure 
1) and infl ows are determined at any moment between 
the starting time t0 and the current time t. The same 
way, the net fl ow of change of any stock, i.e. its 
derivative, represents a diff erence between the infl ow 
and outfl ow, defi ning a certain diff erential equation:

d(Stock)/dt = Inflow(t) -Outflow(t)     (2)

Beside level and rate equations, the so-called auxiliary 
equations, i.e. equations decomposed from an 
appropriate level equation in a situation when a level 
equation is extremely complex, represent a separate 
class of equations in the model. Contrary to level and 
rate equations, auxiliary equations have to be calculated 
in a precisely determined order. In principle, auxiliary 
variable depends only on: already known levels and 
auxiliary variables that can be calculated.

Apart from the stated equations, equations for the 
starting values are signifi cant. They defi ne the initial 
values of all levels and some rates that have to be 
determined before the calculation of model equations 
starts; however, these equations are used to calculate 
the values of some constants. Converting the presented 
equations is done by computer, i.e. specially developed 
so% ware used in SD. When the formulated model 
enters computer so% ware, it is necessary that several 
preliminary simulation researches be done. It is 
necessary that an appropriate value of the DT interval 
be determined and the system state stability analyzed. 
(Petrović, 2010, 382-383):

When determining DT time interval, it is necessary that 
a' ention be paid to the relation between the stimulation 
speed and accuracy. Generally, the DT time interval is 
determined by the shortest time constant used in the 
model. The state stability analysis of the system gives 
information about the reliability of the model itself or 
the stability of the modeled reality segment. 
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Figure 1    Calculations in time K

 Source: Forrester, 1972, 74 (According to: Petrović, 2010, 378)

Rate equations are converted at the present time K, 
a% er level equations have been calculated. The values 
having been determined by rate equations determine 
the rates that represent actions which will be taken in 
the following KL time interval. Therefore, rate equations 
determine fl ows among the levels of the observed 
system. Rate equations are calculated according to the 
present level values in the system, and the starting 
level and the “fl ow-into” level are included as a rule. 
Rates cause level changes. Generally, rate equations 
should be observed as a control tool of what will 
happen within the system in the forthcoming period. 
However, certain auxiliary variables, as an appropriate 
subgroup, can appear within rate equations. Rate 
equations are independent one of another, and their 
mutual interaction is done through their future eff ects 
on the levels.

Time is indexed, i.e. moved to the right for one time 
interval, when the level is calculated for time K and 
rate for the KL interval, i. e. in Figure 1, levels in time 
K become levels in time J, and rates for interval KL, 
rates for the JK interval. This means that time K, 
representing the present, moves by one DT length 
interval. Then, a set of calculations can be repeated in 
order to determine a new state of the observed system 
in the time which is for one DT interval later than the 
time from the previous state. The developed model 
determines the movement of the system throughout 



Testing or the model validation is considered to be 
a comparison of the model to the reality in order to 
accept or reject the model. In fact, validation in SD 
is a process of establishing confi dence in the model 
correctness and usefulness. This is about a complex 
process, where everybody has their own aims and 
criteria for the model validity. The idea of validity as 
an equivalent for confi dence is in confl ict with the 
understanding of validity equally as an absolute truth. 
Confi dence in some model is an adequate criterion 
because there are no proofs for absolute correctness 
that a model represents reality. Validity is also relative 
in a sense that it can only be properly assessed for a 
particular purpose. According to that, validation 
cannot be a completely objective and formal process, 
but must have subjective and qualitative components. 
In other words, model validation is a gradual process 
of establishing confi dence in models (Forrester & 
Senge, 1979, 8; Barlas, 1996, 188).

There are a great number of tests for model validity 
that can be classifi ed in diff erent ways. Forrester & 
Senge (1979) fi nd following tests:

1. tests of model structure (parameter verifi cation 
test, boundary-adequacy structure test, extreme-
conditions test, etc.);

2. tests of model behavior (behavior-reproduction test, 
behavior prediction test, change-behavior test, etc.);

3. tests of policy implications (system-improvement 
tests, changed-behavior-prediction tests, policy-
sensitivity tests, etc.).

Barlas (1996, 189) singles out the following validity 
model tests in SD: structure validity tests (direct 
structure tests and structure-oriented behavior tests) 
and behavior validity tests.

Since there are many tests, there is a question if all 
tests have to be used. Besides, it is important that the 
question when to end the model validation process be 
considered. In that sense, ending the model validation 
process depends on the following determinants: the 
costs of validation, a potential degree of model validity, 
the model size, clients̀  expectations and clients̀  
experience with modeling, relative importance, i.e. 
risk of decision, data intensity and availability and the 
modeler̀ s level of expertise (Schwaninger & Groesser, 

2012). In spite of the fact that it will not always be 
possible to use all the tests for establishing confi dence 
in the SD models, a wide range of tests increase a 
probability for using a greater number of tests and 
including more people into the whole process of 
model validation. Thus, one of the key determinations 
of the previously mentioned tests is the easiness of 
implementation. The accessibility of the whole testing 
process is crucial for the probability of a modeling 
success in SD (Forrester & Senge, 1979, 36; Richardson, 
1996, 147).

The last phase in the modeling process is the 
implementation phase, i.e. models application in policy 
designing. Once trust into the structure and model 
behavior has been established, the model is used for 
designing appropriate policies. Designing policies is 
much more than changing the parameters value, and 
includes creating completely new strategies, structures 
and decision rules. While the feedback system structure 
determines its dynamics, policies will include change 
of dominant feedback loops by the redesigning of 
stocks and fl ows structures; by eliminating the time 
delay; by change of fl ow and quality of information 
available at the key decision points; or by fundamental 
reformulating the decision-making process within 
the system (Sterman, 2000, 104). In fact, SD models 
can be used for redesigning: system structures and/
or decision policies (Petrovic, 2010, 382). The model 
implementation does not end with the ending of a 
certain project or solving a certain problem, but can 
be applied for solving some other, similar problems 
(Sterman, 2000, 81). 

ILLUSTRATION OF THE SYSTEM DYNAMICS 
MODEL APPLICATION

Let the object of the observation be a company that 
has introduced a new product to the market, with 
an to research the process and predict the dynamics 
of the adoption of the new product in the market. In 
that sense, an appropriate SD model providing the 
prediction of the dynamics of the adoption of a new 
product on the market can be developed. F. Bass 
(1969) gives preliminary assumptions of the models 
developed further within the SD conceptual framework 
(Morecro% , 2007; Sterman, 2000).
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Figure 2 shows the model of a new product adoption 
and the identifi ed key stocks, fl ows and feedback 
loops. This is the model inclusive of potential adopters, 
considering the word-of-mouth for the product only. 
The model, in which the adoption rate represents the 
result of the word-of-mouth, implies the two following 
assumptions (Bass, 1969): Above all, it is necessary that 
there be initial adopters, i.e. the value of this variable 
in the model must not be zero, which means that 
there must be one or more people who have already 
been using the product. Also, it is assumed that the 
product is bought only due to the information and 
recommendations of the current adopters. These kinds 
of assumptions limit the model generality, which can 
be prevented by advertising, an important determinant 
of a new product adoption on the market.

There are two key stocks (Sterman, 2000, 324-325): 
adopters and potential adopters, and the adoption 
rate is equal to adoption from the word-of-mouth. 
Also, there are two feedback loops – one, positive or 
reinforcing, represented by the word-of-mouth, and 
the other, negative or balancing, represented by market 

saturation. The positive loop shows that, if there are 
more adopters, there will be more people who can 
orally propagate the product. First, this loop dominates 
the system and generates growth. Contrary to that, 
the negative loop slows the system down, since the 
number of potential adopters decreases due to market 
saturation (because each new adopter originates 
from potential adopters). The aim is to eliminate 
potential adopters, i.e. make all potential adopters be 
transformed into product adopters.

It is assumed that the total population (a potential 
product market) is made up of a million people 
occasionally talking about their shopping. This 
tendency is marked by the contact rate and is assumed 
to be 100. The number of adopter contacts with the rest 
of the population per year represents the multiplication 
of the contacts rate and adopters. Some of these 
contacts lead to product adoption (while the contact 
of two adopters cannot generate a product adoption).  
A probability that any randomly selected contact, i.e. 
the one between an adopter and a potential adopter, 
is equal to the proportion of potential adopters in 
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Figure 2    Key stocks, fl ows and feedback loops in the process of a new product adoption

Source: Morecro% , 2007, 167



the total population. This relation decreases if the 
process of adoption continues, and reaches zero, when 
the market is completely saturated. However, not all 
adopter contacts will result in product adoption. The 
fraction of successful contacts is called the adoption 
fraction, its assumed value is 0.02, which means that 
2% of all contacts lead to product adoption. The contact 
rate and the adoption fraction determine the word-of-
mouth.

Time is marked in years in the model, and dt represents 
a moment small enough to provide numeric accuracy. 
The number of adopters at a specifi c time equals the 
sum of the previous number of adopters and time (t-1) 
and the adoption rate over the interval dt. Contrary to 
that, the number of potential adopters at time t equals 
the subtraction of the previous number of adopters (i.e. 
the number of adopters for time t-dt) and the adoption 
rate over the interval. It is considered that, initially, 
there are 10 adopters among the total population of 
one million, so the rest are potential adopters. The 
adoption rate is equal to adoption from the word-of-
mouth.  

If the stated variables are marked like this:

 A - adopters

 AR - adoption rate

 PA - potential adopters

 IPA - initial potential adopters

 AWM  – adoption from word–of –mouth 

 CR - contact rate

 AF - adoption fraction

 TP - total population

then the following equations can be determined 
(Morecro% , 2007, 168- 169):

A= A(t - dt)+(AR)* dt  
(3)

PA(t)= PA(t - dt) - (AR)* dt  (4)

IPA=TP - A  (5)

AR= AWM  (6)

AWM =CR* A* (PA/TP)* AF  
(7)

The dynamics of product adoption by the word-of-
mouth is shown in Figure 3, where initially there are 
only ten adopters who start transferring their own 
experiences, i.e. propagate a product. During the fi rst 
fi ve years, adopters and their followers very slightly 
infl uence the rest of potential adopters who have not 
heard of the product yet. According to that, in a certain 
period of time, the adoption rate is close to zero; 
however there is a relatively small growth compared 
to the total population of million people. During 
the fourth year, adopters begin to grow in number. 
Therefore, the largest number of the total population 
become product adopters in the time interval between 
the fi % h and the eighth year from the product 
introduction to the market. A% er that, the adoption 
rate begins to fall, since market saturation grows.

If there were zero initial adopters, even with a 
million potential adopters, there would be no growth, 
since the product is not known. All the above stated 
demonstrates a need for the existence of initial adopters 
in order to start with the the word-of- mouth, which 
represents the key model assumption. It is necessary 
that more elements, such as product advertising, 
included in order to create a base of initial adopters. In 
that sense, this model can be expanded by introducing 
advertising and following their eff ects on product 
adoption (Morecro% , 2007, 171).

Since SD models can be applied to any dynamic system, 
there are a great number of case studies and examples 
of their successful use (Forrester, 1972; Sterman, 2000; 
Morecro% , 2007).

QUALITATIVE AND GROUP-MODEL 
BUILDING IN SYSTEM DYNAMICS 

There are certain advantages in management problems 
solving in SD: SD’s strength lies in an assumption 
that the structure is the key determinant of a system 
behavior and the structure can be represented by 
appropriate positive and negative feedback loops. 
The understanding of feedback structures can help 
managers to manage complexity be' er and provide 
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more effi  cient decisions for achieving their goals. 
Since SD models pointing out the key decision points 
and actions of the ones who make those decisions are 
included in the models, the consequences of the current 
policies can be determined and alternative strategies 
can be researched (Jackson, 2003, 78).

However, critics  consider SD models as imprecise, 
and not strict enough, i.e. those models are usually 
built on ignoring certain theories in the researched 
fi eld or without a suffi  cient amount of collected data. If 
SD models are imprecise, then a precise prediction of 
the future system states can all but be provided, at the 
same time it will be just partially useful to decision-
makers (Jackson, 2003, 79 – 80).

Richardson (1996), too, states the following problems 
as the key ones in a further SD development: 
understanding models behavior, model validity, the 
improvement of practical models application, models 
accessibility and availability, qualitative versus 
quantitative modeling, i. e. identifying conditions in 
which it is be' er to use qualitative tools, as well as 
conditions that demand formal quantitative modeling, 
etc. 

SD was based strictly on building quantitative models 
to last for a long period of time. Although SD models 
are a mathematical representation of problems and 
policy alternative, for the most part, the available 
information is not numerical by nature, it is rather 
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Figure 3   Dynamics of product adoption by the word-of-mouth
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qualitative. In spite of a general agreement on the 
importance of qualitative data and tools during the SD 
models development, there are no clear descriptions of 
the purpose and time of their using.

The lack of an integrated set of procedures for acquiring 
and analyzing qualitative information makes a gap 
between the modeled problem and the problem model. 
The gap is even more visible when a model considers 
the use of the so%  variables, such as consumers’ 
satisfactions or products quality. Problems connected 
with the quantifi cation and formulation of qualitative 
variables has led to the development of the qualitative 
SD (Coyle, 2000; Homer & Oliva, 2001; Luna Reys 
& Anderson 2003; Dhawan et al, 2011). In that sense, 
certain diagrams, such as causal loop diagrams, can be 
used as qualitative tools for policy conclusions without 
quantifi cation and simulation (Coyle, 2000, 233).

However, there is a question if certain qualitative tools 
should be used with or without additional quantifi cation 
and simulation. Although there are situations where 
qualitative instruments are used without additional 
quantifi cation and simulation, simulation is almost 
always considered to be wanted in a policy analysis, 
even when there are some uncertainties and so%  
variables. In fact, it is necessary that a danger of 
conclusions made only according to qualitative tools 
as well as the limitations of the simulation models be 
recognized and understood. (Homer & Oliva, 2001). 
Some researches on the eff ects of the quantitative and 
qualitative modeling in SD demonstrate the fact that, 
for relatively simple problems, represented by simple 
diagrams, it is enough to use qualitative modeling tools 
in SD. On the other hand, for complex assignments, it 
is necessary that quantitative models and simulation 
be included (Dhawan et al., 2011, 321). In spite of the 
fact that quantifi cation is useful, one should carefully 
try to quantify so%  variables. This is about a research 
fi eld extremely important for a further development of 
SD (Coyle 2001, 362).

It could also be concluded that the question of using 
qualitative data and tools in SD is not an adequate one. 
The adequate ones would be where and how. Although 
certain authors think that the signifi cance of qualitative 
data mostly stands out in the conceptualization phase, 
and less in the model formulating phase, qualitative 

data are present in all phases of the modeling process 
(Luna – Reyes & Andersen, 2003, 275). According to that, 
some of the key techniques for collecting qualitative 
data can be identifi ed in each modeling phase – such 
as interview, Delphi technique, the nominal group 
technique, etc. (Luna Reyes & Andersen 2003, 287 – 
292).

Another type of critiques in SD is connected with the 
unitary nature of management problem situations, i.e. 
the functionalist systems paradigm which is the base 
for SD. Problem situations in organizations represent 
certain subjective constructions and participant 
interpretations, because the identifying of certain 
structures considers a continual process of negotiating 
with participants i.e. clients in the modeling process. In 
the given context, a tendency to research an SD system 
objectively, from outside the system, with a help of 
models built on the feedback process, represents a 
very complex task to do. Also, in SD, we start with the 
fact that there is accordance upon the model purpose, 
which neglects the purpose and aim variety that 
diff erent participants have in management problems 
solving (Jackson, 2003, 81).

   Group model–building arises as a response to these 
critiques (Vennix, 1995; Vennix 1999; Rouwe' e, 2001) or 
participative modeling (Lane, 2010), which is trying to 
include diff erent participants, i.e. clients perceptions 
and opinions, in the model-building process. This is, 
in fact, an a' empt to apply SD to some insuffi  ciently 
defi ned, i.e. unstructured problems, and in that way 
to approach an interpretative paradigmThe research 
of certain cognitive limitations, i.e. ways for increasing 
capacity of group data processing, on the one hand, 
and the way participants see and interpret diff erent 
problem situations, on the other, are important in 
researching  the group model-building eff ectiveness in 
unstructured problem situations (Vennix, 1999, 381). 

In order to eff ectively face the unstructured problems 
the system dynamicists should, above all, accept the 
fact that in many situations it is not useful, or that all 
the phases of the modeling process are even impossible 
to use. As previously stated, in some situations, it is 
be' er to apply only certain qualitative tools without 
quantifi cation and simulation (Coyle, 2000, Dhawan 
et al, 2011). The fact is that it is necessary to precisely 
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estimate the conditions and eff ects of the qualitative 
and quantitative modeling. 

Beside the stated, it is necessary that diff erent 
ways of inducing the team learning and eff ective 
communication within the groups be expored to 
improve the modeling process. To ensure learning, 
participants have to become modelers. It is necessary 
that the participants take an active part in a model 
development to enable eff ective model learning. 
Generally, in estimating the group model-building 
eff ectiveness, it can be concluded that participating in 
the modeling process increases clients’ commitment 
and makes the implementation easier (Rouwe' e, 2001, 
32, Vennix, 1995, 55). 

However, tending to approach the interpretive 
paradigm, SD risks losing its key functionalist feature 
to identify laws that govern the behavior of systems. It 
means that, above all, SD should keep its functionalist 
characteristics (Jackson, 2003, 81). In fact, certain 
knowledge and skills necessary for model building in 
SD should be combined with the appropriate skills and 
knowledge necessary for facilitating participation and 
negotiation within groups (Vennix, 1999, 392). 

Certain SD defi ciencies can be overcome by a combined 
use of SD and some other interpretive systems 
approaches, such as So%  System Methodology (Coyle 
& Alexander, 1996; Lane & Oliva, 1998; Rodriguez 
Ulloa & Paucar – Caceras, 2005). Besides, SD can be 
combined with other functionalist approaches such 
as Organizational Cybernetics (Schwaninger, 2004; 
Schwaninger & Perez Rios, 2008).

CONCLUSION

SD, as a relevant structuralist–functionalist systems 
methodology, is based on the theory of information 
feedback and control. It is adequate for solving 
complex – unitary management problems, i.e. problem 
situations. Management problem situations in SD are 
expressed by the feedback structure and the process 
within, represented by appropriate diagrams and 
mathematical system models.

SD models represent an extremely powerful tool for 
management problems solving within organizations. 

Developed through an appropriate modeling process, 
the SD model can be used in redesigning adequate 
organization polices and/or structures. The modeling 
process itself is an extremely complex iterative 
process of the modeler’s moving through certain 
phases. Although there are diff erent classifi cations of 
the modeling process phases, the following phases 
can be identifi ed: the conceptualization phase, i.e. 
identifying a problem and presenting it by feedback 
loops; the formulating phase, i.e. the phase of building 
a mathematical model represented by appropriate 
level and rate equations; the testing phase or model 
validation by comparing it to the realistic world; and 
the implementation phase, i.e. model application in 
designing policies for improving the results for an 
organization’s functioning. 

Based on the assumption that the structure generates a 
certain behavior, SD models enable the prediction of a 
future system behavior through computer simulations, 
which is shown on the example of a new product 
adoption on the market. The key hypothesis in the 
paper can be confi rmed by researching the theoretical-
methodological and applicative aspects of management 
problems modeling within the conceptual framework 
of SD. 

In spite of a great number of successful SD model 
applications in management problems solving, the SD 
models have certain limitations. This is about diff erent 
problems connected with the quantifi cation of certain 
so%  variables and possible imprecisions and mistakes 
to follow. Qualitative SD or qualitative modeling in SD 
accentuating the signifi cance of a single or combined 
use of certain qualitative and quantitative tools in SD 
come to surface as a response to these defi ciencies. The 
limitations connected with the functionalist paradigm 
which SD is based on, should also be mentioned.  It 
is related to the fact that SD assumes the existence 
of accordance on the model purpose, by which 
diff erent perceptions and clients i.e. participants in the 
modeling process are neglected. In that sense, there 
are tendencies that SD approaches to the interpretive 
paradigm through group model-building. Despite the 
fact that so%  variables and participants’ perceptions 
should be included in research, SD should not lose its 
key structuralist-functionalist features in tending to 
approach the interpretive paradigm.
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Bearing in mind the identifi ed defi ciencies of SD and 
its models, it is necessary that diff erent assumptions, 
conditions, and ways of a combined use of SD 
and other systems approaches to management be 
researched. SD can be used in combination with 
appropriate interpretive systems methodologies such 
as So%  System Methodology (SSM), where SD models 
represent an adequate support to SSM tools in research 
of organizations̀  structures and their functioning. 
Besides, SD could be combined with systems approaches 
that also belong to the functionalist systems paradigm, 
such as Organizational Cybernetics. A combined SD 
use, i.e. the SD model use with other methodologies, 
methods and techniques, represents a special fi eld 
relevant for future researches. 
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